26 research outputs found

    Interferometry in Wireless Sensor Networks

    Get PDF

    Shooter localization and weapon classification with soldier-wearable networked sensors

    Get PDF
    The paper presents a wireless sensor network-based mobile countersniper system. A sensor node consists of a helmetmounted microphone array, a COTS MICAz mote for internode communication and a custom sensorboard that implements the acoustic detection and Time of Arrival (ToA) estimation algorithms on an FPGA. A 3-axis compass provides self orientation and Bluetooth is used for communication with the soldier’s PDA running the data fusion and the user interface. The heterogeneous sensor fusion algorithm can work with data from a single sensor or it can fuse ToA or Angle of Arrival (AoA) observations of muzzle blasts and ballistic shockwaves from multiple sensors. The system estimates the trajectory, the range, the caliber and the weapon type. The paper presents the system design and the results from an independent evaluation at the US Army Aberdeen Test Center. The system performance is characterized by 1-degree trajectory precision and over 95 % caliber estimation accuracy for all shots, and close to 100 % weapon estimation accuracy for 4 out of 6 guns tested

    Multi-Modal Target Tracking Using Heterogeneous Sensor Networks

    Full text link
    Abstract—The paper describes a target tracking system run-ning on a Heterogeneous Sensor Network (HSN) and presents results gathered from a realistic deployment. The system fuses audio direction of arrival data from mote class devices and object detection measurements from embedded PCs equipped with cameras. The acoustic sensor nodes perform beamforming and measure the energy as a function of the angle. The camera nodes detect moving objects and estimate their angle. The sensor detections are sent to a centralized sensor fusion node via a combination of two wireless networks. The novelty of our system is the unique combination of target tracking methods customized for the application at hand and their implementation on an actual HSN platform. I

    High-Accuracy Differential Tracking of Low-Cost GPS Receivers

    No full text
    In many mobile wireless applications such as the automated driving of cars, formation flying of unmanned air vehicles, and source localization or target tracking with wireless sensor networks, it is more important to know the precise relative locations of nodes than their absolute coordinates. GPS, the most ubiquitous localization system available, generally provides only absolute coordinates. Furthermore, low-cost receivers can exhibit tens of meters of error or worse in challenging RF environments. This paper presents an approach that uses GPS to derive relative location information for multiple receivers. Nodes in a network share their raw satellite measurements and use this data to track the relative motions of neighboring nodes as opposed to computing their own absolute coordinates. The system has been implemented using a network of Android phones equipped with a custom Bluetooth headset and integrated GPS chip to provide raw measurement data. Our evaluation shows that centimeter-scale tracking accuracy at an update rate of 1 Hz is possible under various conditions with the presented technique. This is more than an order of magnitude more accurate than simply taking the difference of reported absolute node coordinates or other simplistic approaches due to the presence of uncorrelated measurement errors

    A Promising Wearable Solution for the Practical and Accurate Monitoring of Low Back Loading in Manual Material Handling

    No full text
    (1) Background: Low back disorders are a leading cause of missed work and physical disability in manual material handling due to repetitive lumbar loading and overexertion. Ergonomic assessments are often performed to understand and mitigate the risk of musculoskeletal overexertion injuries. Wearable sensor solutions for monitoring low back loading have the potential to improve the quality, quantity, and efficiency of ergonomic assessments and to expand opportunities for the personalized, continuous monitoring of overexertion injury risk. However, existing wearable solutions using a single inertial measurement unit (IMU) are limited in how accurately they can estimate back loading when objects of varying mass are handled, and alternative solutions in the scientific literature require so many distributed sensors that they are impractical for widespread workplace implementation. We therefore explored new ways to accurately monitor low back loading using a small number of wearable sensors. (2) Methods: We synchronously collected data from laboratory instrumentation and wearable sensors to analyze 10 individuals each performing about 400 different material handling tasks. We explored dozens of candidate solutions that used IMUs on various body locations and/or pressure insoles. (3) Results: We found that the two key sensors for accurately monitoring low back loading are a trunk IMU and pressure insoles. Using signals from these two sensors together with a Gradient Boosted Decision Tree algorithm has the potential to provide a practical (relatively few sensors), accurate (up to r2 = 0.89), and automated way (using wearables) to monitor time series lumbar moments across a broad range of material handling tasks. The trunk IMU could be replaced by thigh IMUs, or a pelvis IMU, without sacrificing much accuracy, but there was no practical substitute for the pressure insoles. The key to realizing accurate lumbar load estimates with this approach in the real world will be optimizing force estimates from pressure insoles. (4) Conclusions: Here, we present a promising wearable solution for the practical, automated, and accurate monitoring of low back loading during manual material handling

    SI2-SSE: Development of a Software Framework for Formalizing ForceField Atom-Typing for Molecular Simulation

    No full text
    The availability of forcefields for molecular simulation has reduced the effort researchers must devote to the difficult and costly task of determining the interactions between species, allowing them to instead focus on the motivating scientific questions. However, determining which parameters in a forcefield to use is still often a tedious and error prone task. Forcefields can contain tens or hundreds of different types of the same element, where each type represents the element in a different chemical context. The documentation of a typical forcefield tends to be scarce and unstructured, commonly expressed in plain text or in an ad-hoc shorthand notation, leading to ambiguities and increasing the likelihood of incorrect usage. While there are freely available tools to aid in atom-typing, these are typically specific to a particular forcefield or simulator and capture the atom-typing and parameterization rules in ways that are hard to maintain, debug, and evolve. This work proposes to establish a formalism to express the chemical context for which a particular forcefield parameter is applicable (i.e., forcefield usage semantics) and an atom-typing tool that interprets this formalism to generate forcefield parameterizations that are provably correct
    corecore